Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.723
Filtrar
1.
Chem Pharm Bull (Tokyo) ; 72(4): 349-359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556326

RESUMO

Ellagitannins, a class of polyphenols with divergent structures, have attracted considerable attention from synthetic organic chemists. The basic structures in ellagitannins contain esters of D-glucose with galloyl or hexahydroxyldiphenoyl groups, as well as diaryl ether structures. Thus, the synthesis methodologies of such components have been developed by various groups, including our group. This review describes the synthetic methods reported by our group during 2017-2023, aimed at increasing the number of ellagitannins that can be chemically synthesized. In addition, recent related reports are introduced.


Assuntos
Taninos Hidrolisáveis , Polifenóis , Taninos Hidrolisáveis/química , Polifenóis/química
2.
Eur J Pharmacol ; 970: 176435, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38428663

RESUMO

Punicalagin (PUN) is a polyphenol derived from the pomegranate peel. It has been reported to have many beneficial effects, including anti-inflammatory, anti-oxidant, and anti-proliferation. However, the role of PUN in macrophage phagocytosis is currently unknown. In this study, we found that pre-treatment with PUN significantly enhanced phagocytosis by macrophages in a time- and dose-dependent manner in vitro. Moreover, KEGG enrichment analysis by RNA-sequencing showed that differentially expressed genes following PUN treatment were significantly enriched in phagocyte-related receptors, such as the C-type lectin receptor signaling pathway. Among the C-type lectin receptor family, Mincle (Clec4e) significantly increased at the mRNA and protein level after PUN treatment, as shown by qRT-PCR and western blotting. Small interfering RNA (siRNA) mediated knockdown of Mincle in macrophages resulted in down regulation of phagocytosis. Furthermore, western blotting showed that PUN treatment enhanced the phosphorylation of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) in macrophages at the early stage. Mincle-mediated phagocytosis by PUN was inhibited by PDTC (a NF-κB inhibitor) and SB203580 (a p38 MAPK inhibitor). In addition, PUN pre-treatment enhanced phagocytosis by peritoneal and alveolar macrophages in vivo. After intraperitoneal injection of Escherichia coli (E.coli), the bacterial load of peritoneal lavage fluid and peripheral blood in PUN pre-treated mice decreased significantly. Similarly, the number of bacteria in the lung tissue significantly reduced after intranasal administration of Pseudomonas aeruginosa (PAO1). Taken together, our results reveal that PUN enhances bacterial clearance in mice by activating the NF-κB and MAPK pathways and upregulating C-type lectin receptor expression to enhance phagocytosis by macrophages.


Assuntos
Taninos Hidrolisáveis , Macrófagos , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Transdução de Sinais , Fagocitose , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Antioxidantes/farmacologia , Lectinas Tipo C/metabolismo
3.
J Agric Food Chem ; 72(14): 7882-7893, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38530797

RESUMO

IL-1ß is an important cytokine implicated in the progression of inflammatory bowel disease (IBD) and intestinal barrier dysfunction. The polyphenolic compound, geraniin, possesses bioactive properties, such as antitumor, antioxidant, anti-inflammatory, antihypertensive, and antiviral activities; however, its IL-1ß-targeted anticolitis activity remains unclear. Here, we evaluated the inhibitory effect of geraniin in IL-1ß-stimulated Caco-2 cells and a dextran sulfate sodium (DSS)-induced colitis mouse model. Geraniin blocked the interaction between IL-1ß and IL-1R by directly binding to IL-1ß and inhibited the IL-1ß activity. It suppressed IL-1ß-induced intestinal tight junction damage in human Caco-2 cells by inhibiting IL-1ß-mediated MAPK, NF-kB, and MLC activation. Moreover, geraniin administration effectively reduced colitis symptoms and attenuated intestinal barrier injury in mice by suppressing elevated intestinal permeability and restoring tight junction protein expression through the inhibition of MAPK, NF-kB, and MLC activation. Thus, geraniin exhibits anti-IL-1ß activity and anticolitis effect by hindering the IL-1ß and IL-1R interaction and may be a promising therapeutic anti-IL-1ß agent for IBD treatment.


Assuntos
Colite , Glucosídeos , Taninos Hidrolisáveis , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Células CACO-2 , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Mucosa Intestinal/metabolismo
4.
Eur J Med Chem ; 269: 116306, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38471358

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a prevalent pathological condition characterised by the accumulation of fat in the liver. Almost one-third of the global population is affected by NAFLD, making it a significant health concern. However, despite its prevalence, there is currently no approved drug specifically designed for the treatment of NAFLD. To address this critical gap, researchers have been investigating potential targets for NAFLD drug development. One promising candidate is the liver isoform of pyruvate kinase (PKL). In recent studies, Urolithin C, an allosteric inhibitor of PKL, has emerged as a potential lead compound for therapeutic intervention. Building upon this knowledge, our team has conducted a comprehensive structure-activity relationship of Urolithin C. In this work, we have employed a scaffold-hopping approach, modifying the urolithin structure by replacing the urolithin carbonyl with a sulfone moiety. Our structure-activity relationship analysis has identified the sulfone group as particularly favourable for potent PKL inhibition. Additionally, we have found that the presence of catechol moieties on the two aromatic rings further improves the inhibitory activity. The most promising inhibitor from this new series displayed nanomolar inhibition, boasting an IC50 value of 0.07 µM. This level of potency rivals that of urolithin D and significantly surpasses the effectiveness of urolithin C by an order of magnitude. To better understand the molecular interactions underlying this inhibition, we obtained the crystal structure of one of the inhibitors complexed with PKL. This structural insight served as a valuable reference point, aiding us in the design of inhibitors.


Assuntos
Taninos Hidrolisáveis , Hepatopatia Gordurosa não Alcoólica , Piruvato Quinase , Humanos , Fígado , Sulfonas/farmacologia
5.
Viruses ; 16(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38400007

RESUMO

In the realm of clinical practice, nucleoside analogs are the prevailing antiviral drugs employed to combat feline herpesvirus-1 (FHV-1) infections. However, these drugs, initially formulated for herpes simplex virus (HSV) infections, operate through a singular mechanism and are susceptible to the emergence of drug resistance. These challenges underscore the imperative to innovate and develop alternative antiviral medications featuring unique mechanisms of action, such as viral entry inhibitors. This research endeavors to address this pressing need. Utilizing Bio-layer interferometry (BLI), we meticulously screened drugs to identify natural compounds exhibiting high binding affinity for the herpesvirus functional protein envelope glycoprotein B (gB). The selected drugs underwent a rigorous assessment to gauge their antiviral activity against feline herpesvirus-1 (FHV-1) and to elucidate their mode of action. Our findings unequivocally demonstrated that Saikosaponin B2, Punicalin, and Punicalagin displayed robust antiviral efficacy against FHV-1 at concentrations devoid of cytotoxicity. Specifically, these compounds, Saikosaponin B2, Punicalin, and Punicalagin, are effective in exerting their antiviral effects in the early stages of viral infection without compromising the integrity of the viral particle. Considering the potency and efficacy exhibited by Saikosaponin B2, Punicalin, and Punicalagin in impeding the early entry of FHV-1, it is foreseeable that their chemical structures will be further explored and developed as promising antiviral agents against FHV-1 infection.


Assuntos
Infecções por Herpesviridae , Taninos Hidrolisáveis , Ácido Oleanólico/análogos & derivados , Saponinas , Varicellovirus , Animais , Gatos , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Herpesviridae/veterinária
6.
Int Immunopharmacol ; 130: 111665, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38367463

RESUMO

Punicalagin (PUN) was isolated from the peel of pomegranate (Punica granatum L.), is a polyphenol with anti-inflammatory, hepatoprotective, and antioxidant activities. However, it remains unclear whether PUN alleviates the inflammation and anti-inflammatory mechanisms in pro-inflammatory cytokines-induced human keratinocyte HaCaT cells. Here, we investigated that tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) mixture-stimulated HaCaT cells were treated with various concentrations of PUN, followed by analyzed the expression of inflammation-related mediators and evaluate anti-inflammatory-related pathways. Our results demonstrated that PUN ≤ 100 µM did not reduce HaCaT cell viability, and PUN ≥ 3 µM was sufficient to decrease interleukin-6 (IL-6), IL-8, monocyte chemoattractant protein-1 (MCP-1), chemokine ligand 5 (CCL5), CCL17 and CCL20 concentrations. We found that PUN ≥ 10 µM and ≥ 3 µM significantly increased sirtuin 1 (SIRT1) expression and inhibited signal transducer and activator of transcription 3 (STAT3) phosphorylation, respectively. PUN downregulated inflammation-related proteins cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), enhanced nuclear factor erythroid-2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1) expression. Moreover, PUN decreased intercellular adhesion molecule-1 (ICAM-1) expression and inhibited monocyte adhesion to inflamed HaCaT cells. PUN also suppressed inflammatory-related pathways, including mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways in TNF-α/IFN-γ- stimulated HaCat cells. Collectively, there is significant evidence that PUN has effective protective defenses against TNF-α/IFN-γ-induced skin inflammation by enhancing SIRT1 to mediate STAT3 and Nrf2/HO-1 signaling pathway.


Assuntos
Taninos Hidrolisáveis , Punica granatum , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Sirtuína 1/metabolismo , Interferon gama/metabolismo , Punica granatum/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Heme Oxigenase-1/metabolismo , Células HaCaT , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , NF-kappa B/metabolismo , Anti-Inflamatórios/uso terapêutico , Inflamação/metabolismo
7.
Int J Biol Macromol ; 263(Pt 1): 130160, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367777

RESUMO

The purpose of this study was to produce hyaluronic acid customized nanoparticles with chitosan for the delivery of chebulinic acid (CLA) to enhance its anticancer potential against breast cancer. A significant portion of CLA was encapsulated (89.72 ± 4.38 %) and loaded (43.15 ± 5.61 %) within hybrid nanoparticles. The colloidal hybrid nanoparticles demonstrated a polydispersity index (PDI) of about 0.379 ± 0.112, with zeta capacitance of 32.69 ± 5.12 (mV), and an average size of 115 ± 8 (nm). It was found that CLA-CT-HA-NPs had stronger anticancer effects on MCF-7 cells (IC50 = 8.18 ± 3.02 µM) than pure CLA (IC50 = 17.15 ± 5.11 µM). The initial cytotoxicity findings were supported by additional investigations based on comet assay and flow cytometry analysis. Tumor remission and survival were evaluated in five separate groups of mice. When juxtaposed with pure CLA (3.17 ± 0.419 %), CLA-CT-HA-NPs improved survival rates and reduced tumor burden by 3.76 ± 0.811(%). Furthermore, in-silico molecular docking investigations revealed that various biodegradable polymers had several levels of compatibility with CLA. The outcomes of this study might potentially served as an effective strategy for delivering drugs in the context of breast cancer therapy.


Assuntos
Quitosana , Taninos Hidrolisáveis , Nanopartículas , Neoplasias , Animais , Camundongos , Ácido Hialurônico , Simulação de Acoplamento Molecular , Sistemas de Liberação de Medicamentos
8.
Arch Microbiol ; 206(3): 108, 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38368591

RESUMO

A Gram-stain-positive, anaerobic, motile, and short rod-shaped bacterium, designated KGMB12511T, was isolated from the feces of healthy Koreansubjects. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain KGMB12511T was closely related to Gordonibacter pamelaeae 7-10-1-bT (95.2%). The draft genome of KGMB12511T comprised 33 contigs and 2,744 protein-coding genes. The DNA G + C content was 59.9% based on whole-genome sequences. The major cellular fatty acids (>10%) of strain KGMB12511T were C18:1 cis9, C18:1 cis9 DMA (dimethylacetal), and C16:0 DMA. The predominant polar lipids included a diphosphatydilglycerol, four glycolipids, and an unidentified phospholipid. The major respiratory quinones were menaquinone 6 (MK-6) and monomethylmenaquinone 6 (MMK-6). Furthermore, HPLC analysis demonstrated the ability of strain KGMB12511T to convert ellagic acid into urolithin. Based on a comprehensive analysis of phenotypic, chemotaxonomic, and phylogenetic data, strain KGMB12511T represents a novel species in the genus Gordonibacter. The type strain is KGMB12511T (= KCTC 25343T = NBRC 116190T).


Assuntos
Ácido Elágico , Taninos Hidrolisáveis , Humanos , Filogenia , RNA Ribossômico 16S/genética , Fezes , República da Coreia
9.
BMC Complement Med Ther ; 24(1): 93, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365729

RESUMO

BACKGROUND: Multidrug resistance (MDR) in the family Enterobacteriaceae is a perniciously increasing threat to global health security. The discovery of new antimicrobials having the reversing drug resistance potential may contribute to augment and revive the antibiotic arsenal in hand. This study aimed to explore the anti-Enterobacteriaceae capability of bioactive polyphenols from Punica granatum (P. granatum) and their co-action with antibiotics against clinical isolates of Enterobacteriaceae predominantly prevalent in South Asian countries. METHODS: The Kandhari P. granatum (Pakistani origin) extracts were tested for anti-Enterobacteriaceae activity by agar well diffusion assay against MDR Salmonella enterica serovar Typhi, serovar Typhimurium and Escherichia coli. Predominant compounds of active extract were determined by mass spectrometry and screened for bioactivity by agar well diffusion and minimum inhibitory concentration (MIC) assay. The active punicalagin was further evaluated at sub-inhibitory concentrations (SICs) for coactivity with nine conventional antimicrobials using a disc diffusion assay followed by time-kill experiments that proceeded with SICs of punicalagin and antimicrobials. RESULTS: Among all P. granatum crude extracts, pomegranate peel methanol extract showed the largest inhibition zones of 25, 22 and 19 mm, and the MICs as 3.9, 7.8 and 7.8 mg/mL for S. typhi, S. typhimurium and E. coli, respectively. Punicalagin and ellagic acid were determined as predominant compounds by mass spectrometry. In plate assay, punicalagin (10 mg/mL) was active with hazy inhibition zones of 17, 14, and 13 mm against S. typhi, S. typhimurium and E. coli, respectively. However, in broth dilution assay punicalagin showed no MIC up to 10 mg/mL. The SICs 30 µg, 100 µg, and 500 µg of punicalagin combined with antimicrobials i.e., aminoglycoside, ß-lactam, and fluoroquinolone act in synergy against MDR strains with % increase in inhibition zone values varying from 3.4 ± 2.7% to 73.8 ± 8.4%. In time-kill curves, a significant decrease in cell density was observed with the SICs of antimicrobials/punicalagin (0.03-60 µg/mL/30, 100, 500 µg/mL of punicalagin) combinations. CONCLUSIONS: The P. granatum peel methanol extract exhibited antimicrobial activity against MDR Enterobacteriaceae pathogens. Punicalagin, the bacteriostatic flavonoid act as a concentration-dependent sensitizing agent for antimicrobials against Enterobacteriaceae. Our findings for the therapeutic punicalagin-antimicrobial combination prompt further evaluation of punicalagin as a potent activator for drugs, which otherwise remain less or inactive against MDR strains.


Assuntos
Anti-Infecciosos , Taninos Hidrolisáveis , Punica granatum , Antibacterianos/farmacologia , Polifenóis , Enterobacteriaceae , Escherichia coli , Ágar , Metanol , Extratos Vegetais/farmacologia , Anti-Infecciosos/farmacologia , Resistência a Múltiplos Medicamentos
10.
Int Immunopharmacol ; 129: 111656, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340422

RESUMO

Geraniin, a chemical component of the traditional Chinese medicine geranii herba, possesses anti-inflammatory and anti-oxidative activities. However, its anti-inflammatory role in managing NLRP3 inflammasome and pyroptosis remains to be elucidated. To investigate the anti-inflammation mechanism of geraniin, LPS-primed macrophages were incubated with classical activators of NLRP3 inflammasome (such as ATP, Nigericin, or MSU crystals), and MSU crystals were injected into the ankle joints of mice to establish an acute gouty arthritis model. The propidium iodide (PI) staining results showed that geraniin could restrain cell death in the ATP- or nigericin-stimulated bone marrow-derived macrophages (BMDMs). Geraniin decreased the release of lactate dehydrogenase (LDH) and interleukin (IL)-1ß from cytoplasm to cell supernatant. Geraniin also inhibited the expression of caspase-1 p20, IL-1ß in cell supernatant and N-terminal of gasdermin D (GSDMD-NT) while blocking the oligomerization of ASC to form speck. The inhibitory effects of geraniin on caspase-1 p20, IL-1ß, GSDMD-NT, and ASC speck were not observed in NLRP3 knockout (NLRP3-/-) BMDMs. Hence, the resistance of geraniin to inflammasome and pyroptosis was contingent upon NLRP3 presence. Geraniin reduced reactive oxygen species (ROS) production and maintained mitochondrial membrane potential while preventing interaction between ASC and NLRP3 protein. Additionally, geraniin diminished MSU crystal-induced mouse ankle joint swelling and IL-1ß expression. Geraniin blocked the recruitment of neutrophils and macrophages to the synovium of joints. Our results demonstrate that geraniin prevents the assembly of ASC and NLRP3 through its antioxidant effect, thereby inhibiting inflammasome activation, pyroptosis, and IL-1ß release to provide potential insights for gouty arthritis targeted therapy.


Assuntos
Artrite Gotosa , Glucosídeos , Taninos Hidrolisáveis , Inflamassomos , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Artrite Gotosa/induzido quimicamente , Piroptose , Nigericina/farmacologia , Macrófagos , Anti-Inflamatórios/efeitos adversos , Trifosfato de Adenosina/metabolismo , Caspases/metabolismo , Interleucina-1beta/metabolismo
11.
Planta Med ; 90(4): 276-285, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38272038

RESUMO

Cuphea carthagenensis (Jacq.) J. F. Macbr. is a popular plant in Brazilian folk medicine owing to its hypotensive and central nervous system depressant effects. This study aimed to validate the hypotensive effect of the plant's aqueous extract (AE) in rats and examine the vascular actions of three hydrolyzable tannins, oenothein B, woodfordin C, and eucalbanin B, isolated from AE. Systolic blood pressure in unanesthetized rats was determined using the non-invasive tail-cuff method. Oral treatment of normotensive rats with 0.5 and 1.0 g/kg/day AE induced a dose-related hypotensive effect after 1 week. In rat aortic rings pre-contracted with noradrenaline, all ellagitannins (20 - 180 µM) induced a concentration-related vasorelaxation. This effect was blocked by either removing the endothelium or pre-incubating with NG-nitro-l-arginine methyl ester (10 µM), an inhibitor of nitric oxide (NO) synthase. In KCl-depolarized rat portal vein preparations, the investigated compounds did not affect significantly the maximal contractile responses and pD2 values of the concentration-response curves to CaCl2. Our results demonstrated the hypotensive effect of C. carthagenensis AE in unanesthetized rats. All isolated ellagitannins induced vasorelaxation in vitro via activating NO synthesis/NO release from endothelial cells, without altering the Ca2+ influx in vascular smooth muscle preparations. Considering the low oral bioavailability of ellagitannins, the determined in vitro actions of these compounds are unlikely to account for the hypotensive effect of AE in vivo. It remains to be determined the role of the bioactive ellagitannin-derived metabolites in the hypotensive effect observed after oral treatment of unanesthetized rats with the plant extract.


Assuntos
Cuphea , Hipotensão , Ratos , Animais , Vasodilatadores/farmacologia , Cuphea/metabolismo , Taninos Hidrolisáveis/farmacologia , Ratos Wistar , Células Endoteliais , Vasodilatação , Endotélio Vascular , Óxido Nítrico/metabolismo , Aorta Torácica/metabolismo , NG-Nitroarginina Metil Éster/farmacologia
12.
Phytomedicine ; 125: 155370, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266440

RESUMO

BACKGROUND: The emergence of immune checkpoint inhibitors, a novel class of immunotherapy drugs, represents a major breakthrough in cancer immunotherapy, substantially improving patient survival post-treatment. Blocking programmed death-ligand 1 (PD-L1) and programmed death protein-1 (PD-1) has demonstrated promising clinical results in various human cancer types. The US FDA has recently permitted only monoclonal antibody (mAb)-based PD-L1 or PD-1 blockers. Although these antibodies exhibit high antitumor efficacy, their size- and affinity-induced side effects limit their applicability. PURPOSE: As small-molecule-based PD-1/PD-L1 blockers capable of reducing the side effects of antibody therapies are needed, this study focuses on exploring natural ingredient-based small molecules that can target hPD-L1/PD-1 using herbal medicines and their components. METHODS: The antitumor potential of evening primrose (Oenothera biennis) root extract (EPRE), a globally utilized traditional herbal medicine, folk remedy, and functional food, was explored. A coculture system was established using human PD-L1-expressed murine MC38 cells (hPD-L1-MC38s) and CD8+ tumor-infiltrating T lymphocytes (CD8+ TILs) expressing humanized PD-1. The in vivo experiments utilized a colorectal cancer (CRC) C57BL/6 J mouse model bearing MC38 cells expressing humanized PD-L1 and PD-1 proteins. RESULTS: EPRE and its active compound oenothein B effectively hindered the molecular interaction between hPD-L1 and hPD-1. EPRE stimulated tumor-specific T lymphocytes of a hPD-L1/PD-1 CRC mice. This action resulted in the elevated infiltration of cytotoxic CD8+T lymphocytes and subsequent tumor growth reduction. Moreover, the combined therapy of oenothein B, a PD-1/PD-L1 blocker, and FOLFOX (5-fluorouracil plus oxaliplatin) cooperatively suppressed hPD-L1-MC38s growth in the ex vivo model through activated CD8+ TIL antitumor immune response. Oenothein B exhibited a high binding affinity for hPD-L1 and hPD-1. We believe that this study is the first to uncover the inhibitory effects of EPRE and its component, oenothein B, on PD-1/PD-L1 interactions. CONCLUSION: This study identified a promising small-molecule candidate from natural products that blocks the hPD-L1/PD-1 signaling pathway. These findings emphasize the potential of EPRE and oenothein B as effective anticancer drugs.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Taninos Hidrolisáveis , Oenothera biennis , Humanos , Animais , Camundongos , Oenothera biennis/metabolismo , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Ligantes , Camundongos Endogâmicos C57BL , Antineoplásicos/farmacologia , Imunoterapia/métodos , Neoplasias Colorretais/tratamento farmacológico
13.
Yakugaku Zasshi ; 144(2): 183-195, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38296496

RESUMO

Tannins are a group of polyphenols that possess the ability to precipitate proteins, causing an undesirable astringent taste by interacting with salivary peptides. This interaction deactivates the digestive enzymes; therefore, tannins are considered as plant defense substances. The health benefits of tannins and related polyphenols in foods and beverages have been demonstrated by biological and epidemiological studies; however, their metabolism in living plants and the chemical changes observed during processing of foods and medicinal herbs raises some questions. This review summarizes our studies concerning dynamic changes observed in tannins. Ellagitannins present in the young leaves of Camellia japonica and Quercus glauca undergo oxidative degradation as the leaves mature. Similar oxidative degradation is also observed in whiskey when it is kept for aging in oak barrels, and in decaying wood caused by fungi in natural forests. In contrast, ellagitannins have been observed to undergo reduction in the leaves of Carpinus, Castanopsis, and Triadica species as the leaves mature. This phenomenon of reductive metabolism in leaves enabled us to propose a new biosynthetic pathway for the most fundamental ellagitannin acyl groups, which was also supported by biomimetic synthetic studies. Polyphenols undergo dynamic changes during the process of food processing. Catechin in tea leaves undergo oxidation upon mechanical crushing to generate black tea polyphenols. Though detailed production mechanisms of catechin dimers have been elucidated, structures of thearubigins (TRs), which are complex mixtures of oligomers, remain ambiguous. Our recent studies suggested that catechin B-ring quinones couple with catechin A-rings during the process of oligomerization.


Assuntos
Catequina , Taninos , Taninos/química , Taninos/metabolismo , Taninos Hidrolisáveis/química , Taninos Hidrolisáveis/metabolismo , Catequina/química , Catequina/metabolismo , Polifenóis , Chá/química , Oxirredução
14.
Appl Microbiol Biotechnol ; 108(1): 96, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38212967

RESUMO

Fungal infections are increasing rapidly, and antifungal agents used in clinics are limited. Therefore, novel antifungal agents with high efficiency are urgently required. In this study, we investigated the antifungal activity of thonningianin A (THA), a natural compound that is widely found in plants. We first determined the activity of THA against Candida albicans, one of the most common fungal pathogens, and found that THA showed antifungal activity against all C. albicans tested, including several fluconazole-resistant isolates. THA also inhibits the growth of non-Candida albicans species. In addition, THA displayed antibiofilm activity and could not only inhibit biofilm formation but also destroy mature biofilms. The in vivo antifungal efficacy of THA was confirmed in a Galleria mellonella infection model. Further studies revealed that THA could enhance intracellular reactive oxygen species (ROS) production and regulate the transcription of several redox-related genes. Specifically, caspase activity and expression of CaMCA1, a caspase-encoding gene in C. albicans, were remarkably increased upon THA treatment. Consistent with this, in the presence of THA, the Camca1 null mutant displayed higher survival rates and reduced caspase activity compared to the wild-type or CaMCA1-reintroduced strains, indicating an important role of CaMCA1 in the antifungal activity of THA. Taken together, our results indicate that THA possesses excellent antifungal activity and may be a promising novel antifungal candidate. KEY POINTS: • THA exhibits activity against Candida species, including fluconazole-resistant isolates • THA inhibits biofilm formation and destroys mature biofilm • Elevated ROS production and CaMCA1-mediated caspase activity are involved in the antifungal mechanisms of THA.


Assuntos
Antifúngicos , Candida albicans , Taninos Hidrolisáveis , Antifúngicos/farmacologia , Fluconazol/farmacologia , Espécies Reativas de Oxigênio , Caspases , Biofilmes , Testes de Sensibilidade Microbiana
15.
Int J Pharm ; 652: 123842, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38266943

RESUMO

Due to efficient drainage of the joint, the development of intra-articular depots for long-lasting drug release is a difficult challenge. Moreover, a disease-modifying osteoarthritis drug (DMOAD) that can effectively manage osteoarthritis has yet to be identified. The current study was undertaken to explore the potential of injectable, in situ forming implants to create depots that support the sustained release of punicalagin, a promising DMOAD. In vitro experiments demonstrated punicalagin's ability to suppress production of interleukin-1ß and prostaglandin E2, confirming its chondroprotective properties. Regarding the entrapment of punicalagin, it was demonstrated by LC-MS/MS to be stable within PLGA in situ forming implants for several weeks and capable of inhibiting collagenase upon release. In vitro punicalagin release kinetics were tunable through variation of solvent, PLGA lactide:glycolide ratio, and polymer concentration, and an optimized formulation supported release for approximately 90 days. The injection force of this formulation steadily increased with plunger advancement and higher rates of advancement were associated with greater forces. Although the optimal formulation was highly cytotoxic to primary chondrocytes if cells were exposed immediately or shortly after implant formation, upwards of 70 % survival was achieved when the implants were first allowed to undergo a 24-72 h period of phase inversion prior to cell exposure. This study demonstrates a PLGA-based in situ forming implant for the controlled release of punicalagin. With modification to address cytotoxicity, such an implant may be suitable as an intra-articular therapy for OA.


Assuntos
Taninos Hidrolisáveis , Osteoartrite , Espectrometria de Massas em Tandem , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Cromatografia Líquida , Osteoartrite/tratamento farmacológico , Implantes de Medicamento
16.
Exp Neurol ; 374: 114697, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38266765

RESUMO

BACKGROUND: Stroke is one of the leading causes of death and long-term disability worldwide. Previous studies have found that corilagin has antioxidant, anti-inflammatory, anti-atherosclerotic and other pharmacological activities and has a protective effect against cardiac and cerebrovascular injury. OBJECTIVES: The aim of this study was to investigate the protective effects of corilagin against ischemic stroke and to elucidate the underlying molecular mechanisms using network pharmacology, molecular docking, and animal and cell experiments. METHODS: We investigated the potential of corilagin to ameliorate cerebral ischemia-reperfusion injury using in vivo rat middle cerebral artery occlusion/reperfusion (MCAO/R) and in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) models. RESULTS: Our results suggest that corilagin may exert its anti-ischemic stroke effect by interacting with 92 key targets, including apoptosis-associated proteins (Bcl-2, Bax, caspase-3) and PI3K/Akt signaling pathway-related proteins. In vivo and in vitro experiments showed that corilagin treatment improved neurological deficits, attenuated cerebral infarct volume, and mitigated neuronal damage in MCAO/R rats. Corilagin treatment also enhanced the survival of PC12 cells exposed to OGD/R, reduced the rate of LDH leakage, inhibited cell apoptosis, and activated the PI3K/Akt signaling pathway. Importantly, the effects of corilagin on the PI3K/Akt signaling pathway and apoptosis-associated proteins were reversed by the PI3K-specific inhibitor LY294002. CONCLUSIONS: These results indicate that the molecular mechanism of the anti-ischemic effect of corilagin involves inhibiting neuronal apoptosis and activating the PI3K/Akt signaling pathway. These findings provide a theoretical and experimental basis for the further development and application of corilagin as a potential anti-ischemic stroke agent.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Glucosídeos , Taninos Hidrolisáveis , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Farmacologia em Rede , Ratos Sprague-Dawley , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Traumatismo por Reperfusão/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Lesões Encefálicas/tratamento farmacológico , Apoptose
17.
Nat Prod Res ; 38(5): 768-772, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37013695

RESUMO

The study evaluated the therapeutic potential of ethanolic leaf extract of Piliostigma foveolatum (Dalzell) Thoth. (EEBF), its toluene, ethylacetate, methanol soluble fractions (viz. TFBF, EFBF, MFBF), and isolated phytoconstituents against lung cancer. Four compounds were isolated from MFBF by column chromatography and preparative HPLC. Structures were elucidated by IR, 13C-NMR, 1H-NMR, mass spectroscopy and identified as Quercetin, Kaempferol, Isorhamnetin, and ß-glucogallin. EEBF and its biofractions exhibited remarkable antiproliferative activity with GI50<85µg/mL, while isolated Quercetin, Kaempferol, Isorhamnetin, and ß-Glucogallin displayed GI50 values of 56.15 ± 1.16 µM, 68.41 ± 3.98 µM, 55.08 ± 0.57 µM and 58.99 ± 12.39 µM respectively. MFBF demonstrated significant apoptotic activity with 42.24 ± 0.57% cells in early and 4.61 ± 0.88% cells in late apoptosis comparable to standard Doxorubicin. Kaempferol exhibited 23.03 ± 0.37% cells in early and 2.11 ± 0.55% cells in late apoptosis, arresting Hop-62 cells in S-phase. In silico molecular docking, revealed that isolated constituents effectively bound to the same binding site of caspase-3 as Doxorubicin, highlighting their apoptotic mode of action.


Assuntos
Taninos Hidrolisáveis , Quempferóis , Quercetina , Quercetina/farmacologia , Quempferóis/farmacologia , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Pontos de Checagem do Ciclo Celular , Apoptose , Doxorrubicina , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ciclo Celular
18.
Phytother Res ; 38(2): 713-726, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38009260

RESUMO

Psoriasis, an immune-mediated chronic inflammatory skin disease, imposes a huge mental and physical burden on patients and severely affects their quality of life. Punicalagin (PU), the most abundant ellagitannin in pomegranates, has become a research hotspot owing to its diverse biological activities. However, its effects on psoriasis remain unclear. We explored the impact and molecular mechanism of PU on M5-stimulated keratinocyte cell lines and imiquimod (IMQ)-induced psoriasis-like skin inflammation in BABL/c mice using western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), hematoxylin and eosin (H&E) stain, immunohistochemistry, and immunofluorescent. Administration of PU-enriched pomegranate extract at dosages of 150 and 250 mg/kg/day markedly attenuated psoriatic severity, abrogated splenomegaly, and reduced IMQ-induced abnormal epidermal proliferation, CD4+ T-cell infiltration, and inflammatory factor expression. Moreover, PU could decrease expression levels of pro-inflammatory cytokines, such as IL-1ß, IL-1α, IL-6, IL-8, TNF-α, IL-17A, IL-22, IL-23A, and reactive oxygen species (ROS), followed by keratinocyte proliferation inhibition in the M5-stimulated cell line model of inflammation through inhibition of mitogen-activated protein kinases/extracellular regulated protein kinases (MAPK/ERK) and nuclear factor kappaB (NF-κB) signaling pathways. Our results indicate that PU may serve as a promising nutritional intervention for psoriasis by ameliorating cellular oxidative stress and inflammation.


Assuntos
Psoríase , Dermatopatias , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Imiquimode/efeitos adversos , Taninos Hidrolisáveis/farmacologia , Taninos Hidrolisáveis/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Qualidade de Vida , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Pele , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Transdução de Sinais , Queratinócitos , Administração Oral , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
19.
Recent Pat Anticancer Drug Discov ; 19(3): 298-307, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37605424

RESUMO

BACKGROUND: Terminalia chebula (T. chebula) comprising chebulinic acid as its principle active constituent is used to cure various diseases. T. chebula and chebulinic acid are used as antimicrobial, antioxidant, antidiabetic, anti-inflammatory, hepatoprotective, antimutagenic, radioprotective, cardioprotective, antiproliferative, antiarthritic, anticaries, and so on. OBJECTIVE: The objective of this current study is to give an overview of the recent literature and patents of T. chebula and chebulinic acid including methods of its isolation/extraction and their application in the prevention of various cancers and other diseases. METHODS: Present research and patents highlighting the anti-cancer potential of T. chebula and chebulinic acid have been studied and discussed keeping in view the scientific novelty and impact. RESULTS: Both T. chebula and chebulinic acid are currently being explored for their anticancer potential in vitro and in vivo. They are either incorporated alone or in combination with other plants or drugs to show their activity and many clinical trials are also going on various potentials of the plant and chebulinic acid. Novel extraction techniques are also explored and patented. Efforts are being made to improve the bioavailability by developing Novel herbal drug delivery systems of the plant extract or chebulinic acid itself. CONCLUSION: Anti-cancer potential of T. chebula and chebulinic acid may be well established by promising clinical trials and may open new interventions in various tumors. Clinical trials in conjunction with standard therapies are required to explore and validate the actual potential of T. chebula and chebulinic acid respectively.


Assuntos
Antineoplásicos , Frutas , Taninos Hidrolisáveis , Humanos , Patentes como Assunto , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
20.
J Anim Physiol Anim Nutr (Berl) ; 108(1): 111-125, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37602531

RESUMO

Hydrolysable tannins (HT) show potential as silage additive for autumn herbage silages, high in (rumen degradable) protein, as they may reduce proteolysis. Additionally, they have abilities to form pH-reversible tannin-protein complexes, non-degradable in the rumen but degradable in the abomasum and intestines of ruminants. Therefore they can improve milk N efficiency and shift N excretions from urine to faeces, possibly mitigating the environmental impact of ruminants. In this study, two small bunker silos were filled with autumn grass. One was treated with 20 g/kg DM HT extract (TAN) (TannoSan-L), the other with 8 mg/kg DM inoculant containing lactic acid bacteria (INO) (Bonsilage Fit G). Secondly, micro-silos (2.75 L) were filled with four treatments; (1) grass without additive (CON) (n = 5); (2) TAN (n = 5); (3) INO (n = 5); and (4) TAN + INO (n = 5). The bunker silos were used in a cross-over feeding experiment with periods of 4 weeks involving 22 lactating Holstein cows (average ± SD: 183 ± 36.3 days in milk, 665 ± 71.0 kg body weight, and 33.8 ± 3.91 kg/day milk yield). The HT dose was insufficient to reduce proteolysis or alter chemical composition and nutritional value in the micro- and bunker silages. Including grass silage added with TAN (3.2 g HT/kg DM) in the diet, did not affect feed intake nor fat and protein corrected milk yield in comparison to feeding the grass silage added with INO in a similar diet. The TAN-fed cows had an increased faecal N excretion and decreased apparent total-tract N and organic matter digestibility, but no improvement in the cows' N utilization could be confirmed in milk and blood urea levels. Overall, feeding an autumn grass silage treated with 20 g/kg chestnut HT extract did not affect the performance of dairy cows in comparison to feeding an autumn grass silage treated with a lactic acid bacteria inoculant.


Assuntos
Inoculantes Agrícolas , Lactobacillales , Feminino , Bovinos , Animais , Poaceae/metabolismo , Silagem/análise , Taninos/farmacologia , Lactação , Inoculantes Agrícolas/metabolismo , Fermentação , Ácido Láctico/metabolismo , Digestão , Leite/química , Dieta/veterinária , Taninos Hidrolisáveis/análise , Taninos Hidrolisáveis/metabolismo , Taninos Hidrolisáveis/farmacologia , Rúmen/metabolismo , Extratos Vegetais/farmacologia , Ruminantes , Valor Nutritivo , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...